Aircraft Drag Polar

Slides in Italian here.

Aircraft parabolic drag polar

\[C_D = C_{D0} + K\,C_L^2 \label{eq:Drag:Polar:Parabolic:A}\] \[K = \frac{1}{\pi\, \mathrm{A\!R} \, e} \label{eq:K:Drag:Polar:Parabolic}\]

Parabolic polar:

Aircraft parabolic drag polar.
Aircraft parabolic drag polar.

Actual polar:

Aircraft parabolic and actual drag polar.
Aircraft parabolic and actual drag polar.

Generalized parabolic polar

\[C_D = C_{D\mspace{2mu}\mathrm{min}} + K\,\left( C_L - C_{L\mspace{2mu}\mathrm{ideal}} \right)^2 \label{eq:Drag:Polar:Parabolic:B}\]

Equation (\ref{eq:Drag:Polar:Parabolic:B}) is unnecessarily too complicated. An acceptable approximation is given by the simple parabolic drag polar (\ref{eq:Drag:Polar:Parabolic:A}).

Validity of aircraft parabolic drag polar for normal operative conditions.
Validity of aircraft parabolic drag polar for normal operative conditions.

Equivalent parassite area

\[f = C_{D0} \, S \label{eq:f:Parassite:Equivalent:Area}\] \[f = C_{f\mspace{2mu}\mathrm{e}} \, S_\mathrm{wet} \label{eq:f:Parassite:Equivalent:Area:Swet}\] \[f = C_{f\mspace{2mu}\mathrm{e}} \, S_\mathrm{wet} \quad \Rightarrow \quad C_{D0} = \frac{f}{S} \quad \Rightarrow \quad C_{D0} = C_{f\mathrm{e}} \, \frac{S_\mathrm{wet}}{S} \label{eq:CD0:f:Swet}\] \[C_{f\mspace{2mu}\mathrm{e}} = 1.5 \cdot C_{f\mspace{2mu}\mathrm{turb}} \label{eq:Cfe:Cfturb}\]

Oswald efficiency factor

\[e = f \left( M, \mathrm{A\!R}, \Lambda_\mathrm{le} \right) \label{eq:e:Drag:Polar}\]

(various calculation methods in literature)